Array-Comparative Genomic Hybridization (a-CGH)-Based Algorithm for Renal Tumor Subtyping in Needle Biopsies

Massimiliano Spaliviero1, Banumathy Gowrishankar1, Jeremy C. Durack1, Kelly L. Stratton1, Charles Ma2, Timothy F. Donahue1, Alexandra E. Arndt1, Stephen B. Solomon1, Jane Houldsworth*, and Jonathan A. Coleman1
1Memorial Sloan-Kettering Cancer Center; 2Cancer Genetics, Inc.

OBJECTIVE
- To develop a molecular assay to augment biopsy histology in subtyping renal cortical neoplasms.

INTRODUCTION
- Image-guided, percutaneous biopsy of kidney tumors is increasingly utilized, particularly in patients at higher risk of adverse outcomes.
- Biopsy results may facilitate decision-making in the management of small renal masses.
- Despite improved biopsy techniques, low yield and disrupted tissue architecture may make histologic diagnosis impossible.
- Specific genetic alterations have been identified in kidney tumors;1-3
- Accurate detection of genetic alterations may improve the diagnostic capabilities of percutaneous kidney biopsy;4
- Selected patients may avoid extirpative treatment if benign or indolent tumors are determined by biopsy.

MATERIALS
- Specimen acquisition:
 - Percutaneous 18-22 Gauge core biopsies (n = 49) from 47 renal masses and 1 enlarged LN prospectively collected from 44 patients (11/2011 – 1/2014).
- Excluded cases:
 - Cystic fluid only (1 patient);
 - No extracted DNA (1 patient).
- Techniques:
 - 1-4 core biopsies/tumor (median: 2);
 - 1-2 cores: DNA extraction for a-CGH.

Histologic Analysis:
- Diagnosis from pathology reports of biopsy tissue;
- Surgical pathology assessment used when available.

METHODS & RESULTS

Study Patient Characteristics:
- 27 Men, 19 Women
- Median Age (years): 72 (IQR: 63, 74)
- Median Tumor Size (cm): 2.7 (IQR: 1.9, 4.1)
- Median DNA extraction (µg): 2.28 (IQR: 0.88, 4.82)

Array-CGH:
- DNA extraction yielded >500 ng after QC (n = 49).
- Reference DNA: Sex-matched DNA (Promega).
- Digested and labeled DNA hybridized to targeted oligonucleotide microarrays and analyzed according to manufacturer (Agilent Technologies).
- Identification of genomic aberrations:
 - Nexus Copy Number Analysis 7.5 (BioDiscovery Inc.);
 - Histologic classification:
 - a-CGH decision tree (developed using publicly available data).
- Copy number aberrations not related to four studied renal cortical neoplasms identified as Not-Classifiable.
- Biopsies exhibiting no aberrations (other than normal variants) classified as Benign.

Array-CGH Cases:
- Total of 47 biopsies from 44 patients.
- Median maximum core size (cm): 0.7 (IQR: 0.5, 1.6)
- Pathologic Classification (n = 47): Clear cell RCC (ccRCC) = 15
 - Papillary RCC (pRCC) = 11
 - Chromophobe RCC (chrRCC) = 2
 - Unclassified RCC = 3
 - Poorly differentiated favor RCC = 1
 - Low-grade oncocyotinic neoplasm = 4
 - Low-grade smooth muscle neoplasm = 1
 - Benign/Fibrous = 3
 - Angiomyolipoma + 2
 - Oncocytoma + 2
 - High-grade urothelial carcinoma (UC) = 1
 - Non-diagnostic = 2
- Excluded cases = 2

CONCLUSIONS
- DNA yields ≤5.86 µg impaired often aCGH diagnostic capabilities.
- Overall concordance between aCGH and histology of kidney biopsy or surgical specimen was 69%.
- However, the concordance between the aCGH subtyping and surgical specimen histology was 90%.
- Other interesting observations:
 - aCGH was able to offer a definitive diagnosis (confirmed by histologic examination) of all the specimens for 2 specimens (patients 8 and 9) that were called unclassified RCC by biopsy histology.
 - Considering the overlapping morphologic features between chrRCC and UC and the difficult discrimination between these two entities based on histology alone, histology called a specimen (patient 827) as UC while molecular classification by aCGH for the same specimen was chrRCC.
 - The clinical behavior of oncocytomas, which usually present quasi genotypic changes, and low-grade oncocyotinic neoplasms, which are poorly understood, is benign. However, low-grade oncocytoinic neoplasms have the potential to be mixed with smaller components of more aggressive neoplasms. aCGH identified aberrations related to a malignant subtype in one of the four low-oncocyotinic neoplasms in this study.
- Genomic-based platforms have the potential to play a significant role in augmenting histopathology findings from core biopsy.

REFERENCES

CONFIDENCES OF INTEREST
- B.G., C.M. and J.H. are full time employees of Cancer Genetics, Inc.