

Next-Generation Sequencing Panel

Acute Myeloid Leukemia (AML) Myelodysplastic Syndrome (MDS) Myeloproliferative Neoplasms (MPN)

Targeted NGS Panel for Myeloid Malignancies

Designed for acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and myeloproliferative neoplasms (MPN), Focus::Myeloid[™] is a unique NGS panel with 54 biomarkers that provides actionable information for improved diagnosis, prognosis, and risk stratification. Based on the Focus::Myeloid[™] result, each patient can receive the most suitable treatment tailored to their unique cancer. By personalizing diagnosis and improving risk stratification, Focus::Myeloid[™] delivers on the promise of precision medicine.

An Actionable Genomic Assessment of Your Patient's Cancer

With a 5% analytical sensitivity, Focus::Myeloid[™] surpasses other sequencing methodologies and offers robust specificity (>99%).

Acute Myeloid Leukemia (AML)

- Delivers faster results on the four wellestablished biomarkers (NPM1, FLT3, CEBPA, KIT) as part of the 54 gene panel.
- Expands therapy options for patients with appropriate enrollment in clinical trials.

Myelodysplastic Syndrome (MDS)

- Identifies patients classified as very low to intermediate risk by IPSS that could benefit from more aggressive therapies.
- Includes all biomarkers listed in current diagnostic and treatment guidelines.

Myeloproliferative Neoplasms (MPN)

- Faster results for multiple biomarkers in panel allow patients to start appropriate therapy sooner.
- Complete genomic assessment in a single assay provides accurate risk stratification.

Comprehensive, Targeted Panel of Genes

Focus::Myeloid[™] is an actionable tool to help predict disease progression and guide patient management.

Focus::Myeloid [™] NGS Panel [54 genes]										
ABL1	BRAF	CDKN2A	ETV6	GATA2	IKZF1	KMT2A	NPM1	PTPN11	SMC1A	TP53
ASXL1	CALR	CEBPA	EZH2	GNAS	JAK2	KRAS	NRAS	RAD21	SMC3	U2AF1
ATRX	CBL	CSF3R	FBXW7	HRAS	JAK3	MPL	PDGFRA	RUNX1	SRSF2	WT1
BCOR	CBLB	CUX1	FLT3	IDH1	KDM6A	MYD88	PHF6	SETBP1	STAG2	ZRSR2
BCORL1	CBLC	DNMT3A	GATA1	IDH2	KIT	NOTCH1	PTEN	SF3B1	TET2	

Methodology and Results

After extraction, regions of interest relative to the 54 target genes are amplified using specific primers. Multiplexed sequencing by synthesis is performed using the MiSeq System (Illumina®). Sequencing reads are aligned and annotated variants identified in specimens are confirmed by repetition or Sanger sequencing with pre-designed primers to cover the respective region. Confirmed variants are reported with the functional significance of the variant (pathogenic or uncertain) on the respective gene product with the respective nucleotide change.

Specimen Requirements

One Lavender (EDTA) tube of peripheral blood or bone marrow aspirate. Minimum: 2-3 mL. Shipped at room temperature.

TAT 10-14 days

CPT Codes 81455

CGI Laboratory Licensure

CAP (Laboratory #: 7191582, AU-ID: 1434060), CLIA (Certificate#: 31D1038733), New Jersey (CLIS ID #: 0002299), New York State (PFI: 8192), Pennsylvania (031978), Florida (800018142), Maryland (1395), California (COS 00800558).

Focus::Myeloid[™] AML Sample Report

Results: Pathogenic mutations are detected in the FLT3, NPM1, and WT1 genes. A mutation of uncertain significance is detected in the STAG2 gene. **REFERENCE SEQUENCE** GENE **EXONS TESTED MUTATION(S) DETECTED** FUNCTIONAL IMPACT FLT3 NM_004119.2 14, 15, 20 c.2503G>T; p.Asp835Tyr Pathogenic NPM1 NM_002520.6 12 c.860_861insCTGC; p.Trp288CysfsTer12 Pathogenic NM_001042749.1 STAG2 Uncertain full c.2197G>A; p.Ala733Thr NM_024426.4 WT1 7, 9 c.1406A>G; p.His469ARG Pathogenic Negative for mutations in: ABL1 (ex4-6), ASXL1 (ex12), ATRX (ex8-10,17-31), BCOR, BCORL1, BRAF (ex15), CALR (ex9), CBL (ex8-9), CBLB (ex9-10), CBLC (ex9-10), CDKN2A, CEBPA, CSF3R (ex14-17), CUX1, DNMT3A, ETV6, EZH2, FBXW7 (ex9-11), GATA1 (ex2), GATA2 (ex2-6), GNAS (ex8-9), HRAS (ex2-3), IDH1 (ex4), IDH2 (ex4), IKZF1, JAK2 (ex12,14), JAK3 (ex13), KDM6A, KIT (ex2,8-11,13,17), KMT2A (MLL) (ex5-8), KRAS (ex2-3), MPL (ex10), MYD88 (ex3-5), NOTCH1 (ex26-28,34), NRAS (ex2-3), PDGFRA (ex12,14,18), PHF6, PTEN (ex5,7), PTPN11 (ex3,13), RAD21, RUNX1, SETBP1 (ex4, partial), SF3B1 (ex13-16), SMC1A (ex2,11,16-17), SMC3 (ex10,13,19,23,25,28), SRSF2 (ex1), TET2 (ex3-11), TP53 (ex2-11), U2AF1 (ex2,6), ZRSR2 In addition to those listed below in Methodology, the following targets with reduced coverage were assessed at 20% sensitivity in this specimen [NRAS (chr1:115256391-115256650), NOTCH1 (chr9:139390488-139390712)]. Interpretation: A single nucleotide variant in the FLT3 gene was detected. This missense mutation is expected to impact the function of the protein. A 4 nucleotide insertion in the NPM1 gene was detected. This frameshift mutation is expected to impact the function of the protein. A single nucleotide variant in the STAG2 gene was detected. The impact of this missense mutation on the function of the protein is uncertain. A single nucleotide variant in the WT1 gene was detected. This missense mutation is expected to impact the function of the protein. **Description:** Acute myeloid leukemia (AML) is characterized by a clonal expansion of myeloid blasts in the bone marrow, peripheral blood, and/or other tissues. It is the most common form of acute leukemia among adults and displays great heterogeneity both clinically and genetically. Approximately 5-20% of AML are therapy-related and generally have overall poorer outcome than de novo AML. As part of a diagnostic workup, bone marrow analysis with cytogenetics (karyotype with/without FISH) is routinely performed, to not only confirm diagnosis but is also important for predicting remission rates, relapse risks, and overall survival outcomes according to current guidelines.¹ Molecular markers such as mutations and small insertions/deletions also exhibit clinical relevance by helping to refine prognostic groups, in particular those in the intermediate-risk cytogenetic group with a normal karyotype (NK-AML).^{1,2} Ongoing studies continue to define the clinical utility of such markers in other distinct cytogenetic sub-groups such as those with monosomal karyotype. Importantly, the clinical impact of the various mutations must be considered in the context of the full clinical and cytogenetic characteristics of each case. Overall in AML, recurrently altered genes have been detected in different functional pathways involved in the pathogenesis of the disease: spliceosome (in ~13% AML), activated signaling (FLT3, KIT, KRAS, NRAS in ~59%), chromatin modifiers (ASXL1, EZH2, MLL-PTD, and MLL fusions in ~30%), DNA methylation (TET1, TET2, IDH1, IDH2, DNMT3A in ~46%), cohesin complex (in ~13%), tumor suppressors (TP53, WT1, PHF6 in ~13%), transcription factor fusions (PML-RARA, MYH11-CBFB, other in ~18%), NPM1 in ~27%, and myeloid transcription factors (CEBPA, RUNX1, others in ~22%).^{2.3} The FLT3 and NPM1 genes exhibit the most frequent abnormalities with prognostic relevance.^{1.3} In NK-AML, NPM1 mutations occur in about 50% of cases and confer better responses and improved outcome in the absence of FLT3-ITD mutation as compared with NK-AML NPM1-negative cases.^{1,4} FLT3 mutations occur predominantly as internal tandem duplications (ITD) and it has a well-recognized negative prognostic influence.^{1,5,6} The clinical relevance of the less frequent tyrosine kinase domain (TKD) point mutations in FLT3 (mostly at p.D835) is less consistent across studies.^{1,6,7} Mutations in the CEBPA gene are observed in about 10% of AML cases, and are generally associated with a favorable outcome in NK-AML, more so in those displaying double mutations, than single variants.8.9 KIT mutations are found in about 20% of AML patients with inv(16) or t(16;16) or t(8;21), and mark increased risk of relapse and decreased overall survival in this subgroup.^{10,11} Another frequently mutated gene is DNMT3A, where the most common mutation is found at p.R882 and is often found together with NPM1 and FLT3 mutations.^{6,12} The clinical relevance of DNMT3A mutations is less well understood.^{1,2} Mutations have also been reported frequently in AML in the IDH1 and IDH2 genes, the former portending worse outcome in favorable-risk NK-AML (with NPM1 mutation without FLT3-ITD) and intermediate risk (without NPM1 mutation without FLT3-ITD).^{1,2,13} Mutations of these two genes are generally mutually exclusive, and for IDH2, several hot spots have been identified: p.R172, p.R140, though the clinical relevance have as yet to be fully investigated. Mutations in the ASXL1, WT1, PHF6, TET2, and RUNX1 genes in NK-AML (and other cytogenetically-defined intermediate-risk AML) have been reported to be associated with poor prognosis in several studies, mostly in those cases that are FLT3-ITD negative.^{1-3,14} In other studies, mutations in ASXL1 and U2AF1 associate with myelodysplastic-related changes, while those in TP53 are observed in higher incidence in cases with more complex karyotypes.²³ Thus, interpretation of the clinical relevance of mutations in AML must be considered in the context of cytogenetic-risk categories but also with respect to other mutations such as FLT3-ITD and NPM1. O'Donnell et al. NCCN Clinical Practice Guidelines in Oncology: Acute myeloid leukemia. Version 1.2015 Meyer et al. Translational implications of somatic genomics in acute myeloid leukemia. Lancet Oncol, 2014;15:e382-94 Green et al. Prognostic significance of CEBPA mutations in a large cohort of younger adults with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J Clin Oncol, 2010;28:2739-47 **References:** 9. 2. Paschka et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): A Cancer and Leukemia Group B Study. J Clin Oncol, 2006;24:3904-11 Boissel et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia, 2006;20:965-70 з. Sanchez et al, Integrating genomics into prognostic models for AML, Semin Hematol, 2014;51:298-305 Sanchez et al. Integrating genomics into prognosic models for AML. Semini Hernatol, 2014;51:296-3 Thiede et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult pateints with acute myeloid leukemia (AML). Blood, 2006;107:4011-20 Santos et al. Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute 5. mveloid leukemia, Cancer, 2011:117:2145-55 12. Thol et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Patel et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Eng J Med, Oncol, 2011;29:2889-96 13. Marcucci et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo 2012;366:1079-89

- 2012;366:1079-89 Whitman et al. FLT3 D853/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid 2010;28:2348-55
 - Krauth et al. WT1 mutations are secondary events in AML, show varying frequencies and impact on prognosis between genetic subgroups. Leukemia, 2015;29:660-7
- gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood. 2006; 111:1552-9
 Schlenk et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med, 2008;358:1909-18

7.

Results:	Pathogenic mutations are detected in the BCOR and TET2 genes. A mutation of uncertain significance is detected in the EZH2 gene.							
	GENE	REFERENCE SEQUEN	CE EXONS TESTE	D MUTATION(S) DETECTED	FUNCTIONAL IMPACT			
	BCOR	NM_001123385.1	full	c.572G>A; p.Trp191Ter	Pathogenic			
	EZH2	NM_004456.4	full	c.397T>A; p.Tyr133Asn	Uncertain			
	TET2	NM_001127208.2	3-11	c.5476G>T; p.Glu1826Ter	Pathogenic			
	Negative for mutations in: ABL1 (ex4-6), ASXL1 (ex12), ATRX (ex8-10,17-31), BCORL1, BRAF (ex15), CALR (ex9), CBL (ex8-9), CBLB (ex9-10), CDKN2A, CEBPA, CSF3R (ex14-17), CUX1, DNMT3A, ETV6, FBXW7 (ex9-11), FLT3 (ex14,15,20), GATA1 (ex2), GATA (ex8-9), HRAS (ex2-3), IDH1 (ex4), IDH2 (ex4), IKZF1, JAK2 (ex12,14), JAK3 (ex13), KDM6A, KIT (ex2,8-11,13,17), KMT2 KRAS (ex2-3), MPL (ex10), MYD88 (ex3-5), NOTCH1 (ex26-28,34), NPM1 (ex12), NRAS (ex2-3), PDGFRA (ex12,14,1 (ex5,7), PTPN11 (ex3,13), RAD21, RUNX1, SETBP1 (ex4, partial), SF3B1 (ex13-16), SMC1A (ex2,11,16-17), SMC3 (ex10 SRSF2 (ex1), STAG2, TP53 (2-11), U2AF1 (ex2,6), WT1 (ex7,9), ZRSR2							
Interpretation:	A single nucleotide variant in the BCOR gene was detected. This nonsense mutation is expected to impact the function of the protein.							
	A single nucleotide variant in the EZH2 gene was detected. The impact of this missense mutation on the function of the protein is uncertain.							
	A single nucleotide variant in the TET2 gene was detected. This nonsense mutation is expected to impact the function of the protein.							
Description:	Myelodysplastic hematopoiesis a clinical concern is 70-75 years. cell counts whe to distinguish M in classification deletions are of or with normal I patients are risk clinical data and Mutation analys	syndromes (MDS) are a he and peripheral blood cytopen s are morbidities caused by Diagnostic evaluation of MD re dysplastic changes in herr IDS and AML for intent to tr , and cytogenetic/FISH ana both diagnostic and prognos caryotype but with clinical da c-stratified according to the In d in the most recent revision, is can help to better define ri	terogeneous group of cl ias. The bone marrow of the cytopenias and evo S involves assessment hatopoietic lineages are eat decisions. ¹ Other d yses and more recent tic value according to c ta supportive of a diagr ternational Prognostic classifies patients into o sk-stratification of MDS	lonal hematopoietic stem cell malignand f MDS patients is often hypercellular, bur lution to acute myeloid leukemia (AML) c of peripheral blood smears, bone mar used for classification purposes and all iagnostic evaluations of serum factor I y gene sequencing identifying clonal u urrent guidelines. ¹ In cases with equivo losis of MDS, mutation analysis can as Scoring System (IPSS) which combines one of five risk groups: very low, low, inter patients, in particular those in the inter	cies characterized by ineffective may be hypocellular. The major . ¹ The median age at diagnosis row morphology, and abnormal ong with clinical features assists evels and flow cytometry assist nutations and small insertions/ cal histology and flow cytometry sist to establish diagnosis. MDS is cytogenetic, morphologic, and rmediate, high, and very high. ^{1,2} mediate risk group.			
References:	About 80% of MDS patients Will have a mutation in one of the over 40 recurrently mutated genes reported to date for large MDS sample datasets with potential underlying functional relevance, and importantly no one gene mutation is diagnostic of MDS. ^{1,3-7} Current guidelines splicing factor genes (SF3B1, SRSF2, U2AF1, ZRSR2, PRPF8), DNA methylation (TET2, IDH1, IDH2, DNMT3A), histone modification (ASXL1, EZH2), signal transduction and transcription factors (RUNX1, TP53, NRAS, KRAS, ETV6, EVI1, JAK2, FLT3) cohesion complex (STAG2, RAD21, SMC3), and others (CBL, SETBP1, BCOR, and CSNK1A1). ^{3,4,7} Mutations in SF3B1, SRSF2, and U2AF1 are seen in about 40% of MDS patients. Mutations in SF3B1 are associated with the presence of ring sideroblasts and occurs with high frequency in MDS or MDS/myeloproliferative neoplasm subgroups of RARS or RARS-T, and are associated with a lower risk of leukemic transformation. ^{8,9} JAK2 mutations are also found commonly in RARS-T. While the presence of mutations in other genes is not specifically associated with a specific subtype, there is data supporting their clinical relevance. ^{3,4,6,10,11} For example, mutations in RUNX1, NRAS, and TP53 are associated with clinical adverse features including with excess bone marrow blast proportion and severe thrombocytopenia. ¹ The independent prognostic value of TP53, EZH2, ETV6, RUNX1, and ASXL1 mutations to predict decreased overall survival (OS) within IPSS(-R) risk group. ^{10,11} Mutations in DNMT3A, U2AF1, SRSF2, CBL, PRPF8, SETBP1, and KRAS have also variously been reported to be associated with shorter OS. ^{3,4,6,12} On the other hand, mutations in SF3B1 reportedly are associated with a more favorable outcome. ⁹ TP53 mutations are associated with MDS bearing complex and monosomal karyotypes. ¹⁴ Also, patients with del(5q) exhibit a higher frequency of TP53 mutations, associated with reduced response to lenalidomide. ¹⁵ Therapy-related MDS with overall increased clinical aggressiveness than de novo MDS, has recently been reported to hav							
References:	 Cheensberg et al. NCC 2.2015 Creenberg et al. Rev syndromes. Blood, 20 Haferlach et al. Land Leukemia, 2014;28:2 Papaemmanuit et al. syndromes. Blood, 20 Raza et al. The gene Cancer, 2012;12:849 Cazzola et al. The rg Pellagatti et al. The rg 	A summar i facture variabilities in orrodology: N ised International Prognostic Scoring System 112;120:2454-65 Clinical and biological implications of driver m 113;122:3616-27 tic basis of phenotypic heterogeneity in myelo -59 netic basis of myelodysplasia and its clinical r iolocular pathogenesis of the myelodysplastic	(IPSS-R) for myelodysplastic nyelodysplastic syndromes. utations in myelodysplatic dysplastic syndromes. Nat Rev elevance. Blood, 2013;122:4021-34 syndromes. Eur J Haematol, 2015;	 Matovat et al. Chined symbol control of SrSF Influttute myelodysplastic/myeloproliferative neoplasms. Blood, Bejar et al. Clin effect of pt mutations in myelodysplati 11. Bejar. Prognostic models in myelodysplastic syndrom 2013;504-10 Thol et al. Frequency and prognostic impact of mutati myelodysplastic syndromes. Blood, 2012;119:3578-84 Sebaa et al. Incidence of 17p deletions and TP53 mu myeloid leukemia with 5q-deletion. Genes Chromoso 14. Jadersten et al. TP53 mutations in low-risk myelodyspl progression. J Clin Oncol. 2011;29:1971-9 Mallo et al. Response to lenalidomide in myelodyspla cytogenetics and mutations. Br J Haematol. 2013;162 	2011;118:6239-46 c syndromes. N Engl J Med, 2011;364:2496-506 es. Hematol Am Soc Hematol Educ Program ons in SRSF2, U2F1, and ZRSR2 in patients with ation in myelodysplastic syndrome and acute nes Cancer, 2012;51:1086-92 lastic syndromes with del(5q) predict disease stic syndromes with del(5q): influence of 74-86			

- Yoshida et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature, 2011;478:64-9
- Ok et al. Mutational profiling of therapy-related myelodysplastic syndromes and acute myeloid leukemia by next-generation sequencing, a comparison with de novo diseases. Leukemia Res, 2015;39:348-54

Focus::Myeloid[™] MPN Sample Report

Results:	Pathogenic mutations are detected in the DNMT3A and JAK2 genes.							
	GENE REFERENCE SEQUENCE EXONS TESTED MUTATION(S) DETECTED FUNCTIONAL IMPACT							
	DNMT3A	NM_022552.4	full	c.2711C>T; p.Pro904Leu	Pathogenic			
	JAK2	NM_004972.3	12,14	c.1849G>T; p.Val617Phe	Pathogenic			
	Negative for mutations in: ABL1 (ex4-6), ASXL1 (ex12), ATRX (ex8-10,17-31), BCOR, BCORL1, BRAF (ex15), CALR (ex9), CBL (ex8-9), CBLB (ex9-10), CBLC (ex 10), CDKN2A, CEBPA, CSF3R (ex14-17), CUX1, ETV6, EZH2, FBXW7 (ex9-11), FLT3 (ex14,15,20), GATA1 (ex2), GATA2 (ex2-6), GN. (ex8-9), HRAS (ex2-3), IDH1 (ex4), IDH2 (ex4), IKZF1, JAK3 (ex13), KDM6A, KIT (ex2,8-11,13,17), KMT2A (MLL) (ex5-8), KRAS (ex2- MPL (ex10), MYD88 (ex3-5), NOTCH1 (ex26-28,34), NPM1 (ex12), NRAS (ex2-3), PDGFRA (ex12,14,18), PHF6, PTEN (ex5,7), PTPN (ex3,13), RAD21, RUNX1, SETBP1 (ex4, partial), SF3B1 (ex13-16), SMC1A (ex2,11,16-17), SMC3 (ex10,13,19,23,25,28), SRSF2 (ex STAG2, TET2 (ex3-11), TP53 (ex2-11), U2AF1 (ex2,6), WT1 (ex7,9), ZRSR2 In addition to those listed below in Methodology, the following targets with reduced coverage were not assessed in this specimen [RUN (chr21:36164340-36164578), KDM6A (chrX:44732770-44733003)].							
Interpretation:	: A single nucleotide variant in the DNMT3A gene was detected. This missense mutation is expected to impact the function of the protein.							
	A single nu	cleotide variant in the J	AK2 gene was detected. T	his missense mutation is expected	to impact the function of the protein.			
Description:	 scription: The myeloproliferative neoplasms (MPN) comprise a group of clonal hematopoietic stem cell disorders characterized by overproduct of one or several myeloid lineages in peripheral blood, and additionally manifested as a hypercellular bone marrow.¹ The major clin concerns for patients with chronic MPNs are the risk of vascular events)thrombosis) and a long-term risk of transformation to acute myel leukemia (AML). MPNs are generally diagnosed based on peripheral blood smears and counts, bone marrow morphology, karyotype/Fl and molecular genetic tests.¹ They constitute two main groups: BCR-ABL1-defined chronic myeloid leukemia (CML) and the BCR-AB negative MPN. The latter group encompasses essential thrombocythemia (ET), polycythemia vera (PV), primary myelofibrosis (PMF), pc ET and post-PV MF, and unclassifiable MPN, and are the target diseases for the current assay. It has been well documented that about 95% of patients with PV bear the JAK2V617F mutation, as does about 60% of patients with and 40-50% of PMF, underscoring the importance of dysregulated growth factor signaling in these neoplasms, in particular the JAK-S pathway.^{2,3} Other JAK2 mutations were evident in JAK2V617F-negative PV, in particular in exon 12, but not so for the remainder of ET a PMF not bearing JAK2V617F mutation.⁴ In these JAK2-UMPL wild-type ET and PMF, frameshift mutations were evident in CALR ge in exon 9 as insertions or deletions.⁶ Of the CALR mutations, about 80% could be accounted for by either a 52bp deletion (p.L367fs^{**} more frequent in PMF, or a 5bp TTGTC insertion (p.K385fs^{*4}7). Mutations in the JAK2, MPL, and CALR genes occur in a mutually exclus manner. For the most part CALR-mutated ET/PMF patients are younger, have lower leucocyte count and higher platelet count. Other ge members of the JAK-STAT pathway also exhibit mutation in MPNs but at reduced frequencies and include LNK and CBL.⁷³ Mutation profiling of BCR-ABL1-negative MPNs has revealed the presence of s							
	ASXL1, EZ karyotype. ¹³ in these ger	H2, SF3B1, SRSF2, and High-risk PMF disease h hes have been reported i	und in PMF and reportedly with high ned by CALR-negative/ASXL1-positive al relevance is less well understood	gher frequency in patients with normal ve mutation status. ¹⁴ Similarly, mutations I. ¹⁵				
References:	 Vardiman et al. neoplasms and Anature, 2005;4 Levine et al. A Nature, 2005;4 Levine et al. Ac thrombocythen Scott et al. JAK 2007;356:459- Pikman et al. N metaplasia. PL Klampfl et al. S 2013;369:2379 Grand et al. Fr myeloproliferat Oh et al. Novel myeloproliferat 	The 2008 revision of the World Health d acute leukemia: rationale and importa unique clonal JAK2 mutation leading to 34:1144-8 ttivating mutation in the tyrosine kinase nia, and myeloid metaplasia with myelol (2 exon 12 mutations in polycythemia ve 68 MPLW515L is a novel somatic activating oS Med, 2006;3:e270 isomatic mutations of calreticulin in myel -90 equent CBL mutations associated with vie neoplasms. Blood, 2009;113:6182-92 mutations in the inhibitory adaptor prot ive neoplasms. Blood, 2010;116:988-92	Organization (WHO) classification of myelo nt changes. Blood, 2009;114:937-51 constitutive signaling causes polycythaemia JAK2 in polycythemia vera, essential librosis. Cancore Cell, 2005;7:387-97 era and idiopathic erythrocytosis. New Eng J mutation in myelofibrosis with myeloid oproliferative neoplasms. N Engl J Med, 11q acquired uniparental disomy in 2 ein LNK drive JAK-STAT signaling in patient	 Im et al. DNMT3A and IDH mutations in a associations with prognosis and potential a vera. Abdel-Wahab et al. Genetic characterizat mailgnancies. Blood, 2009;114:144-7 Lundberg et al. Clonal evolution and clinin neoplasms. Blood, 2014;23:2220-8 Med, Tefferi et al. IDH mutations in primary my survival: clinical evidence for leukemoger Massie et al. A compendium of cytogenet ocretalets in 826 patients. Br J Haematol, 14. Tefferi. Primary mylecibrosis: 2014 updat Hematol, 2014;89:915-25 Tefferi. Novel mutations and their function JAK2, MPL, TET2, ASXL1, CBL, IDH, an ts with 	acute myeloid leukemia and other myeloid malignancies: I treatment strategies. Leukemia, 2014;28:1774-83 tion of TET1, TET2, and TET3 alterations in myeloid cal correlates of somatic mutations in myeloproliferative elofibrosis predict leukemic transformation and shortened nic collaboration with JAK2V617F. Leukemia, 2012;26:475-80 tic abnormalities in myelofibrosis: molecular and phenotypic , 2015;169:71-6 e on diagnosis, risk-stratification, and management. Am J hal and clinical relevance in myeloproliferative neoplasms: d IKZF1. Leukemia, 2010;24:1128-36			

For more information, contact:

CGI Laboratories[™]

201 Route 17 North, 2nd Floor Rutherford, New Jersey 07070 Client Services: 201.528.9187 www.cancergenetics.com

